В предыдущей статье, Обзор нейронных сетей для классификации изображений, мы ознакомились с основными базовыми понятиями сверточных нейронных сетей, а также лежащими в их основе идеями. В данной статье мы рассмотрим несколько архитектур глубоких нейронных сетей, обладающих…
Перевод статьи подготовлен в преддверии старта курса «Промышленный ML на больших данных» Распределенное обучение на нескольких высокопроизводительных вычислительных экземплярах может сократить время обучения современных глубоких нейронных сетей на большом объеме данных с…
Публикуем вторую часть статьи о типах архитектуры нейронных сетей. Вот первая. За всеми архитектурами нейронных сетей, которые то и дело возникают последнее время, уследить непросто. Даже понимание всех аббревиатур, которыми бросаются профессионалы, поначалу может показаться
Оптимизаторы — важный компонент архитектуры нейронных сетей. Они играют важную роль в процессе тренировки нейронных сетей, помогая им делать всё более точные прогнозы. Специально к старту нового потока расширенного курса по машинному и глубокому обучению, делимся с вами простым описанием основных методик, используемых оптимизаторами градиентного спуска, такими как SGD, Momentum, RMSProp, Adam и др. Читать далее