ML‑модели применяются в сервисах Яндекса уже много лет, мы накопили большой опыт в их обучении. Статьи об этом коллеги регулярно публикуют, в том числе на Хабре. Но сегодня хочу обсудить другую не менее важную задачу — ускорение инференса (процесса работы…
Проблемы качества базы данных LLM[1] и необучаемости LLM в силу ограничения размеров контекстного окна сводятся к одной проблеме никак с LLM не связанной – оценке доверия к публикациям и их авторам вообще. Вторая проблема – LLM не умеет решать простые логические задачи легко решаемые
Сегодня мы продолжим изучать руководства по разработке LLM. А 23 апреля на онлайн-встрече расскажем, почему создание платформы для инференса LLM с нуля — далеко не всегда оптимальный выбор, и объясним, как MWS GPT может значительно упростить и ускорить работу с большими языковыми моделями. Подключайтесь, регистрация открыта по ссылке. Читать далее
Мы с вами подобрались к заключительной части статьи-инструкции об организации распределённого инференса и шардирования LLM в домашних условиях. Осталось совсем чуть-чуть — в финальной главе разберёмся, как развернуть Open WebUI через Helm и связать его с нашим Ray-кластером. Это даст возможность настроить авторизацию и удобный интерфейс для взаимодействия с нашей моделью. В конце статьи попросим домашнюю LLM подвести итоги всей проделанной работы, а также поговорим о планах по развитию проекта. Читать далее