Каждый день появляются решения на базе генеративных моделей, помогающие бизнесу привлекать новых пользователей и удерживать старых. Подход Retrieval augmented generation позволяет вводить в контекст больших языковых моделей (LLM) корпоративные документы, чтобы чат-бот корректнее отвечал на вопросы пользователей. Гарантирует ли добавление документа в контекст, что чат-бот не будет вводить пользователей в заблуждение или отвечать на вопросы про изготовление бомб? Как защитить RAG?
Генерация дополненного извлечения (RAG) стала самым популярным способом предоставления LLM дополнительного контекста для создания адаптированных выходных данных. Это отлично подходит для приложений LLM, таких как чат-боты или агенты ИИ, поскольку RAG предоставляет пользователям…
Когда хайп захватывает умы, кажется, что любое техническое решение должно строиться вокруг новой модной технологии и что теперь-то мы ух заживем! Сегодня у нас на хайпе RAG (Retrieval-Augmented Generation), вчера — NFT, позавчера — блокчейн везде и всюду. Давайте попробуем разобраться, нужен ли RAG на самом деле, или это просто «новый блокчейн» и через год все набьют шишки и забудут о нем. Читать далее
Процесс Retrieval-Augmented Generation (RAG) представляет собой довольно сложную систему, состоящую из множества компонентов. Вопрос о том, как определить существующие методы RAG и их оптимальные варианты реализации этапов обработки информации для выявления лучших практик. В настоящий момент остается наиболее актуальным. В этой статье я хочу поделиться своим опытом относительно реализации подходов и практик в области RAG систем, который реализует систематический подход к решению этой проблемы. Читать далее