Ранее в блоге beeline cloud мы рассказывали об открытых СУБД для систем ИИ. Продолжим тему и рассмотрим еще несколько находок в этой области — разносторонние инструменты, упрощающие работу с эмбеддингами, семантическим поиском и RAG. Читать далее
На фоне развития генеративных и больших языковых моделей набирают обороты векторные базы данных. В прошлый раз в блоге beeline cloud мы обсудили, насколько этот тренд устойчив, а также предложили несколько книг для желающих погрузиться в тему. Сегодня же мы собрали компактную подборку открытых СУБД и поисковых движков, способных помочь в разработке систем ИИ. Обсуждаем такие инструменты, как Lantern, LanceDB, CozoDB, ArcadeDB, Dart Vector DB, Marqo и Orama. Читать далее
В RAG-решениях все чаще обращаются к графовым базам данных. В этой статье я опишу своё мнение относительно того, в каких ситуациях графовые базы данных действительно оправданы в RAG, а в каких стоит остаться на традиционном векторном подходе. Это может быть полезно для разработчиков и исследователей, которые ищут оптимальные инструменты для построения RAG-решений и хотят понять, когда графовые базы данных могут помочь в их задачах. Читать далее
Генерация дополненного извлечения (RAG) стала самым популярным способом предоставления LLM дополнительного контекста для создания адаптированных выходных данных. Это отлично подходит для приложений LLM, таких как чат-боты или агенты ИИ, поскольку RAG предоставляет пользователям…