Проблемы качества базы данных LLM[1] и необучаемости LLM в силу ограничения размеров контекстного окна сводятся к одной проблеме никак с LLM не связанной – оценке доверия к публикациям и их авторам вообще. Вторая проблема – LLM не умеет решать простые логические задачи легко решаемые
Когда мы говорим о бенчмаркинге LLM в какой-то предметной области, то имеем в виду две разные концепции: бенчмарки моделей LLM и бенчмарки систем LLM. Бенчмаркинг моделей LLM заключается в сравнении базовых моделей общего назначения (например, GPT, Mistral, Llama, Gemini, Claude и так далее). Нам не…
Меня зовут Антон Гращенков, и я занимаюсь развитием Java в Альфа-Банке. Программированием увлекаюсь ещё со школы: писал на множестве разных языков — от Pascal до TypeScript, мне это просто нравится. В статье я на примерах покажу, для каких задач я использую локальные модели. Да, существует много инструментов доступных в облаке, — тот же ChatGPT, Copilot или YandexGPT. Однако можно запустить такую модель и локально, и сделать это крайне просто. Ведь если хочется, то почему бы и да? Читать далее
Я был вдохновлен ранее вышедшей статьей автора MikeMSN - "Задача Эйнштейна. ChatGPT, YaGPT2, Gigachat, Mistral Large" и решил провести большой тест наиболее популярных LLM нейросетей. Использовал для этого сайт Chatbot Arena, а также свой компьютер, на котором можно запустить локальные LLM нейронные сети. Читать далее