Библиотеки и сервисы AutoML вошли в мир машинного обучения. Для дата-сайентиста это очень полезные инструменты, но иногда они должны быть адаптированы к потребностям бизнес-контекста, в котором работает дата-сайентист. Вот почему вам нужно создать свою собственную библиотеку AutoML. В преддверии старта нового потока курса «Машинное обучение» мы делимся материалом, в котором описано, как это сделать на Python. Давайте начнём
Определимся с терминологией. Можно найти c десяток формулировок «AutoML- это…» с разной степенью детализации. Но все они сведутся к словам «AutoML — автоматизирует и упрощает работу с данными». И вот здесь как раз и начинаются сложности. Границы определения AutoML размыты. Есть фреймворки работающие на «3 строчках» кода, есть с платформы с GUI, есть библиотеки для профессионалов и новичков. Попробуем разобраться.. Читать далее
Как создать свою собственную нейронную сеть с нуля на PythonМотивация: в рамках моего личного пути к лучшему пониманию глубокого обучения я решил создать нейронную сеть с нуля без библиотеки глубокого обучения, такой как TensorFlow. Я считаю, что понимание внутренней работы нейронной…
В этой статье мы поговорим о истории развития машинного обучения (ML) и обработки естественного языка искусственным интеллектом (NLP), расскажем, что такое AutoML и какими они бывают, а также о том, как Voximplant сделал эти технологии доступными каждому при помощи собственного AutoML компонента.Присаживайтесь, будет интересно. Поехали!