Мы уже писали про проблемы безопасности в языковых моделях и сегодня мы поговорим о состязательных суффиксах или как их ещё называют Adversarial suffixes. Такие суффиксы - это один из инструментов для получения всего, что вы хотите, добавляя их в запросы к LLM , они помогают получить ответ на любой ваш сокровенный вопрос (о религии, политике, опасных аспектах социальных медиа и многом другом). Давайте глубже разберемся в этом...
Проблемы качества базы данных LLM[1] и необучаемости LLM в силу ограничения размеров контекстного окна сводятся к одной проблеме никак с LLM не связанной – оценке доверия к публикациям и их авторам вообще. Вторая проблема – LLM не умеет решать простые логические задачи легко решаемые
Или как я оказался в команде победителей соревнования Machines Can See 2018 adversarial competition. Суть любых состязательных атак на примере. Так уж получилось, что мне довелось поучаствовать в соревновании Machines Can See 2018. Я присоединился к соревнованию я поздновато (примерно за неделю до…
Когда мы говорим о бенчмаркинге LLM в какой-то предметной области, то имеем в виду две разные концепции: бенчмарки моделей LLM и бенчмарки систем LLM. Бенчмаркинг моделей LLM заключается в сравнении базовых моделей общего назначения (например, GPT, Mistral, Llama, Gemini, Claude и так далее). Нам не…