За последние годы качество LLM моделей сильно выросло, методы квантизации стали лучше, а видеокарты мощнее. Тем не менее качество генерации все еще напрямую зависит от размера весов и, как следствие, вычислительной сложности. Кроме того, генерация текста авторегрессионна - токен…
Проблемы качества базы данных LLM[1] и необучаемости LLM в силу ограничения размеров контекстного окна сводятся к одной проблеме никак с LLM не связанной – оценке доверия к публикациям и их авторам вообще. Вторая проблема – LLM не умеет решать простые логические задачи легко решаемые
Алгоритмы — это всего лишь пошаговые алгоритмы решения задач, и большинство таких задач уже были кем-то решены, протестированы и проверены. Можно, конечно, погрузиться в глубокую философию гениального Кнута, изучить многостраничные фолианты с доказательствами и обоснованиями, но хотите ли вы тратить на это свое время? Откройте великолепно иллюстрированную книгу, и вы сразу поймете, что алгоритмы — это просто. А грокать алгоритмы — это веселое и увлекательное занятие. Читать дальше →
Сегодня мы продолжим изучать руководства по разработке LLM. А 23 апреля на онлайн-встрече расскажем, почему создание платформы для инференса LLM с нуля — далеко не всегда оптимальный выбор, и объясним, как MWS GPT может значительно упростить и ускорить работу с большими языковыми моделями. Подключайтесь, регистрация открыта по ссылке. Читать далее