В данной статье представлен обзор различных популярных (и не только) оптимизаторов, которые применяются в машинном и глубоком обучении, в частности для обучения нейронных сетей. Мы рассмотрим их основную идею и ключевые особенности, переходя от простых к более сложным концепциям. Помимо этого, в самом конце вы сможете найти большое количество дополнительных источников для более детального ознакомления с материалом. Читать далее
CQM — другой взгляд в глубоком обучении для оптимизации поиска на естественном языке Краткое описание: Calibrated Quantum Mesh (CQM)— это следующий шаг от RNN / LSTM (Рекуррентные нейронные сети RNN (Recurrent Neural Networks) / Долгая краткосрочная память (Long short-term memory; LSTM) ). Появился новый алгоритм, называемый Calibrated Quantum Mesh (CQM), который обещает повысить точность поиска на естественном языке без использования размеченных данных обучения. Читать дальше
В материале, переводом которого мы решили поделиться к старту курса о машинном и глубоком обучении, простым языком рассказывается о семантическом поиске, статья охватывает шесть его методов; начиная с простых сходства по Жаккару, алгоритма шинглов и расстояния Левенштейна,…
Привет Мир! Много было сказано о сути GraphQL, но гораздо меньше о самих запросах. От простого к более сложному, я раскрою тему. Заинтересованным, — добро пожаловать под кат. Читать дальше →