Бинарная классификация — одна из ключевых задач машинного обучения, но в реальных приложениях часто важно не только определить класс, но и понять, с какой вероятностью модель принимает решение. Как проверить точность вероятностных предсказаний? В статье обсуждаются специализированные инструменты для оценки качества вероятностных прогнозов, ключевые метрики и их интерпретация. Материал будет полезен для практиков, стремящихся повысить точность и объяснимость своих моделей. Читать далее
Привет, Хабр! В задачах машинного обучения для оценки качества моделей и сравнения различных алгоритмов используются метрики, а их выбор и анализ — непременная часть работы датасатаниста. В этой статье мы рассмотрим некоторые критерии качества в задачах классификации, обсудим, что является важным при выборе метрики и что может пойти не так. Читать дальше →
Часто приходится слышать, что математика, включая статистику и теорию вероятностей с комбинаторикой, не слишком нужна разработчику. Что ж, в некоторых случаях это действительно так. Но для представителей ряда направлений всё это нужно. Кому именно требуется теория вероятностей с сопутствующими дисциплинами и зачем? Об этом поговорим под катом. И сразу хочу пояснить, что статья предназначена для начинающих специалистов. Читать далее
Предыдущая часть (про линейную регрессию, градиентный спуск и про то, как оно всё работает) — habr.com/ru/post/471458 В этой статье я покажу решение задачи классификации сначала, что называется, «ручками», без сторонних библиотек для SGD, LogLoss'а и вычисления градиентов, а затем с помощью библиотеки PyTorch. Читать дальше →