Всем привет. Меня зовут Алмаз Хуснутдинов. В этой статье я сделал разбор алгоритма автоматического дифференцирования для глубокого обучения. Идею для реализации я взял из книги «Грокаем глубокое обучение». Я разобрал как вычисляются производные для основных операций и показал, как сделать простую реализацию.Содержание: граф вычислений, операции и производные по ним, прямой и обратный проход по графу ручное вычисление, реализация прямого и обратного прохода по графу, пример использования. Читать далее
В этой статье я привел базовые сведения о логистической регрессии и показал как сделать модель с нуля на чистом Python. Логистическая функция, обучение, метрики качества для модели классификации, реализация и небольшой разбор обучения весов.Статья подойдет для того, кто новичок или кому интересно разобраться в том, как происходит обучение модели на низком уровне. Читать далее
Всем привет. Меня зовут Алмаз Хуснутдинов. В этой статье я рассказываю про алгоритм обратного распространения ошибки, который используется для обучения нейросетей.Содержание: архитектура простой нейросети и инициализация переменных, прямое распространение ручной расчет, вывод производных, вывод алгоритма, обратное распространение ручной расчет, реализация простой архитектуры нейросети и задача «логическое или», реализация класса для многослойной нейросети и изображения MNIST. Читать далее
В этой статье я привел основные сведения о методе классификации k-ближайших соседей. Рассказываю все в своем стиле. Теоретические моменты и простая реализация.Содержание: что это за метод, идея этого метода, как классифицировать (регрессировать) новые объекты, масштабирование признаков, как его можно применять, реализация. Читать далее