Салют, Хабр! Прошедший сезон оказался богат на релизы: ровно год назад мы делились новостями о GigaChat Pro, затем весной рассказали об увеличении контекста и улучшении возможностей модели, а совсем недавно завершили обучение GigaChat Vision: мы научили GigaChat понимать картинки и уже пишем про это статью.Наши модели непрерывно развиваются, обретая всё больше новых функций, и сегодня повод рассказать о них. Встречайте наш новый GigaChat MAX! GigaChat MAX
Салют, Хабр! Прошедший сезон оказался богат на релизы: ровно год назад мы делились новостями о GigaChat Pro, затем весной рассказали об увеличении контекста и улучшении возможностей модели, а совсем недавно завершили обучение GigaChat Vision: мы научили GigaChat понимать картинки и уже пишем про это статью.Наши модели непрерывно развиваются, обретая всё больше новых функций, и сегодня повод рассказать о них. Встречайте наш новый GigaChat MAX! GigaChat MAX
В вводной части обзора мы познакомились с концепцией Retrieval Augmented Generation (RAG) и её расширением через методологию RAGAS (Retrieval Augmented Generation Automated Scoring). Мы разобрались, как RAGAS подходит к процессу оценки эффективности и точности RAG-систем.В этой части мы более подробно рассмотрим техническую сторону RAGAS. Как обычно, начнем с более простых и интуитивно понятных примеров, потом перейдем к более сложным сценариям. Читать далее
В предыдущей статье мы разбирались с тем, как RAGAS помогает оценить работу ретриверов в RAG-системах. Продолжая наше исследование, теперь мы переключаемся на другой важный аспект - качество языковых моделей, или LLM. Эти модели играют центральную роль в создании тех ответов, которые мы видим при общении с чат-ботами. Понять, насколько эффективны они в своей задаче, крайне важно, так как именно от их работы зависит успешное взаимодействие пользователей с системой. Читать далее