Привет, я Азат Хакимов, аналитик данных команды «ИИ для ИТ Поддержки» в Т1 Иннотех. Мы разрабатываем интеллектуальные системы помощи и автоматизации для команд поддержки. В этой статье я расскажу про одну из задач анализа текстов, с которой столкнулась команда в ходе разработки системы для нулевой линии поддержки.Задачу, которую пытались решить - наполнение базы готовых решений для RAG сервиса простыми и легкими, с точки зрения ресурсоемкости, методами Читать далее
В RAG-решениях все чаще обращаются к графовым базам данных. В этой статье я опишу своё мнение относительно того, в каких ситуациях графовые базы данных действительно оправданы в RAG, а в каких стоит остаться на традиционном векторном подходе. Это может быть полезно для разработчиков и исследователей, которые ищут оптимальные инструменты для построения RAG-решений и хотят понять, когда графовые базы данных могут помочь в их задачах. Читать далее
Генерация дополненного извлечения (RAG) стала самым популярным способом предоставления LLM дополнительного контекста для создания адаптированных выходных данных. Это отлично подходит для приложений LLM, таких как чат-боты или агенты ИИ, поскольку RAG предоставляет пользователям…
В библиотеке искусственного интеллекта для 1С появилась поддержка RAG (Retrieval Augmented Generation). Что такое библиотека искусственного интеллекта для 1С, что такое RAG и как этим пользоваться совместно Читать далее