Большие языковые модели (LLM) демонстрируют впечатляющие возможности в генерации кода, но их применение в сложных проектах часто сталкивается с проблемами надежности и консистентности. Рассмотрим Interoperable Literate Programming (ILP) — новый подход, использующий принципы грамотного…
Проблемы качества базы данных LLM[1] и необучаемости LLM в силу ограничения размеров контекстного окна сводятся к одной проблеме никак с LLM не связанной – оценке доверия к публикациям и их авторам вообще. Вторая проблема – LLM не умеет решать простые логические задачи легко решаемые
Зачем использовать бенчмарки для оценки LLM? Бенчмарки LLM помогают оценивать точность больших языковых моделей, обеспечивая стандартизированную процедуру измерения метрик выполнения различных задач. Бенчмарки содержат все структуры и данные, необходимые для оценки LLM, в том…
Когда мы говорим о бенчмаркинге LLM в какой-то предметной области, то имеем в виду две разные концепции: бенчмарки моделей LLM и бенчмарки систем LLM. Бенчмаркинг моделей LLM заключается в сравнении базовых моделей общего назначения (например, GPT, Mistral, Llama, Gemini, Claude и так далее). Нам не…