На сегодняшний день градиентный бустинг (gradient boosting machine) является одним из основных production-решений при работе с табличными, неоднородными данными, поскольку обладает высокой производительностью и точностью, а если быть точнее, то его модификации, речь о которых пойдёт чуть позже.В данной статье представлена не только реализация градиентного бустинга GBM с нуля на Python, но а также довольно подробно описаны ключевые особенности его наиболее популярных модификаций. Читать далее
Всем привет! В прошлой статье мы разбирались, как устроены решающие деревья, и с нуля реализовали алгоритм построения, попутно оптимизируя и улучшая его. В этой статье мы реализуем алгоритм градиентного бустинга и в конце создадим свой собственный XGBoost. Повествование будет идти
Фреймворк XGBoost (Extreme Gradient Boosting, экстремальный градиентный бустинг) — это эффективная опенсорсная реализация алгоритма градиентного бустинга. Этот фреймворк отличается высокой скоростью работы, а модели, построенные на его основе, обладают хорошей производительностью. Поэтому он пользуется популярностью при решении задач классификации и регрессии с использованием табличных наборов данных. Но процесс обучения XGBoost-моделей может занять много времени. Читать далее
Всем привет! Настало время пополнить наш с вами алгоритмический арсенал. Сегодня мы основательно разберем один из наиболее популярных и применяемых на практике алгоритмов машинного обучения — градиентный бустинг. Наша задача — основательно разобраться в бустинге, поэтому…