Поскольку я столкнулся с существенными затруднениями в поисках объяснения механизма обратного распространения ошибки, которое мне понравилось бы, я решил написать собственный пост об обратном распространении ошибки реализовав алгоритм Word2Vec. Моя цель, — объяснить сущность алгоритма, используя простую, но нетривиальную нейросеть. Кроме того, word2vec стал настолько популярным в NLP сообществе, что будет полезно сосредоточиться на нем. Читать дальше →
В данной статье даётся общее описание векторного представления вложений слов - модель word2vec. Также рассматривается пример реализации модели word2vec с использованием библиотеки PyTorch. Приведена реализация как архитектуры skip-gram так и CBOW. Читать далее
Всем привет! Новогодние праздники подошли к концу, а это значит, что мы вновь готовы делиться с вами полезным материалом. Перевод данной статьи подготовлен в преддверии запуска нового потока по курсу «Алгоритмы для разработчиков». Поехали! Метод обратного распространения…
Классическое объяснение word2vec как архитектуры Skip-gram с отрицательной выборкой в оригинальной научной статье и бесчисленных блог-постах выглядит так: while(1) { 1. vf = vector of focus word 2. vc = vector of focus word 3. train such that (vc . vf = 1) 4. for(0 <= i <= negative samples): vneg = vector of word *not* in context train such that (vf . vneg = 0) }…