Оптимизаторы — важный компонент архитектуры нейронных сетей. Они играют важную роль в процессе тренировки нейронных сетей, помогая им делать всё более точные прогнозы. Специально к старту нового потока расширенного курса по машинному и глубокому обучению, делимся с вами простым описанием основных методик, используемых оптимизаторами градиентного спуска, такими как SGD, Momentum, RMSProp, Adam и др. Читать далее
В этой статье мы поговорим о математике градиентного спуска, почему при обучении нейронных сетей применяется стохастический градиентный спуск и о вариации SGD (Stochastic Gradient Descent) с использованием скользящего среднего (SGD с momentum и Nesterov Accelerated Gradient). Читать дальше →
В предыдущей статье, Обзор нейронных сетей для классификации изображений, мы ознакомились с основными базовыми понятиями сверточных нейронных сетей, а также лежащими в их основе идеями. В данной статье мы рассмотрим несколько архитектур глубоких нейронных сетей, обладающих…
Публикуем вторую часть статьи о типах архитектуры нейронных сетей. Вот первая. За всеми архитектурами нейронных сетей, которые то и дело возникают последнее время, уследить непросто. Даже понимание всех аббревиатур, которыми бросаются профессионалы, поначалу может показаться