Сегодня мы продолжим изучать руководства по разработке LLM. А 23 апреля на онлайн-встрече расскажем, почему создание платформы для инференса LLM с нуля — далеко не всегда оптимальный выбор, и объясним, как MWS GPT может значительно упростить и ускорить работу с большими языковыми моделями. Подключайтесь, регистрация открыта по ссылке. Читать далее
Мы в MWS запустили агрегатор язковых моделей, в котором можно работать с несколькими LLM через единый интерфейс. В MWS GPT доступны: собственные модели МТС, внешние модели, такие как DeepSeek, или модели самого заказчика. Через API эти модели легко подключить к любой корпоративной…
Проблемы качества базы данных LLM[1] и необучаемости LLM в силу ограничения размеров контекстного окна сводятся к одной проблеме никак с LLM не связанной – оценке доверия к публикациям и их авторам вообще. Вторая проблема – LLM не умеет решать простые логические задачи легко решаемые
Когда мы говорим о бенчмаркинге LLM в какой-то предметной области, то имеем в виду две разные концепции: бенчмарки моделей LLM и бенчмарки систем LLM. Бенчмаркинг моделей LLM заключается в сравнении базовых моделей общего назначения (например, GPT, Mistral, Llama, Gemini, Claude и так далее). Нам не…