Проблемы качества базы данных LLM[1] и необучаемости LLM в силу ограничения размеров контекстного окна сводятся к одной проблеме никак с LLM не связанной – оценке доверия к публикациям и их авторам вообще. Вторая проблема – LLM не умеет решать простые логические задачи легко решаемые
Когда мы говорим о бенчмаркинге LLM в какой-то предметной области, то имеем в виду две разные концепции: бенчмарки моделей LLM и бенчмарки систем LLM. Бенчмаркинг моделей LLM заключается в сравнении базовых моделей общего назначения (например, GPT, Mistral, Llama, Gemini, Claude и так далее). Нам не…
Привет, на связи Юлия Рогозина, аналитик бизнес-процессов Шерпа Роботикс. Сегодня я перевела для вас статью, тема которой касается именно использования Large Language Models (LLM) как части вашего продукта, а не использования ИИ как инструмента в процессе разработки (например, таких инструментов, как Cursor или Zed AI). Читать далее
Зачем использовать бенчмарки для оценки LLM? Бенчмарки LLM помогают оценивать точность больших языковых моделей, обеспечивая стандартизированную процедуру измерения метрик выполнения различных задач. Бенчмарки содержат все структуры и данные, необходимые для оценки LLM, в том…