В 2021-2022 годах уже ни для кого не секрет, что понимать логику работы моделей машинного обучения важно и нужно. Иначе можно насобирать множество проблем: от того, что модель не будет принята конечным пользователем, потому что непонятна, до того, что она будет работать неправильно, а
Интерпретируемость ML-моделей - очень широкая концепция. То, насколько интерпретация хороша, зависит не только от инструментов и отчетов, которые мы предоставляем пользователю, но и от потребностей пользователя и особенностей задач, которые он решает.В статье разберемся, как эффективно работать с интерпретируемостью ML-моделей в зависимости от потребностей ключевых пользователей. Читать далее
Привет дорогой друг, ты всегда хотел попробовать машинное обучение, но область выглядела загадочно и сложно? Я хотел бы поделиться с тобой моей историей как я сделал первые шаги в машинном обучении, при нулевом знании Python и высшей математики на небольшом примере. Читать дальше →
Сложность представления данных для глубокого обучения растет с каждым днем. Нейронные сети на основе данных в виде графа (Graph Neural Network, GNN) стали одним из прорывов последних лет. Но почему именно графы набирают все большую популярность в машинном обучении? Конечной целью моего…