Во второй части курса по созданию ИИ-агентов превращаем безжизненные схемы в настоящих цифровых собеседников: подключаем нейросети к LangGraph, учим их запоминать контекст на сотни сообщений и гарантированно получать валидный JSON вместо творческой "болтовни".Создаем умные системы,
В первой части курса по созданию ИИ-агентов разбираем фундаментальные основы LangGraph: что такое графы состояний, как работают узлы и рёбра, зачем нужны условные переходы и циклы.Учимся строить архитектуру будущих AI-агентов без единой строчки ML-кода — только чистая логика и понятные примеры. От простого калькулятора возраста до сложных циклических процессов с визуализацией графов. Готовим фундамент для интеграции с нейросетями в следующих частях. Читать далее
В третьей части курса по созданию ИИ‑агентов совершаем революционный скачок: превращаем умных болтунов в настоящих цифровых исполнителей с «руками».Учим агентов самостоятельно работать с файлами, базами данных, API и внешними системами. Больше никаких просьб…
Что делает AI агента умнее обычного LLM? AI агенты помогают преодолеть фрагментарность традиционных подходов, сохраняют контекст между операциями и адаптируются к задачам на лету.Узнайте, как создать своего первого AI агента с помощью LangGraph, не погружаясь в сложности. Репозиторий автора с примерами AI агентов собрал уже более 6000 звезд на GitHub! Читать далее