Современные большие языковые модели (LLM), такие как GPT-4 и BERT, демонстрируют впечатляющие возможности в обработке естественного языка. Однако их значительные вычислительные требования и объемы данных делают их применение на устройствах с ограниченными ресурсами…
Сдерживает ли токенизация потенциал больших языковых моделей? Несмотря на свою популярность, этот подход имеет ряд ограничений, которые становятся всё более заметными с развитием LLM. В статье мы разберём, почему токенизация является костылём, какие проблемы она создаёт и какие альтернативные методы предлагают исследователи для их решения. От байтовых моделей до работы с концептами — как пытаются улучшить ситуацию и что это может означать для будущего языковых моделей. Читать далее
Прошло около полугода после последней моей статьи о перспективах развития больших языковых моделей. Чтобы не утомлять долгим чтением, её краткое резюме:Критика современных больших языковых моделей (БЯМ): они статичны, неэффективны в вычислениях и обучении, что ведет индустрию…
Обучение больших нейронных сетей — это искусство. В сфере ИИ уже давно известны следующие два факта. Во-первых — высококачественные учебные данные оказывают значительное влияние на улучшение результатов работы больших моделей. Во-вторых — применение таких данных способно…