Это вольный перевод статьи Rudy Gilman и Katherine Wang Intuitive RL: Intro to Advantage-Actor-Critic (A2C).Специалисты по усиленному обучению (RL) подготовили множество отличных учебных пособий. Большинство, однако, описывают RL в терминах математических уравнений и абстрактных диаграмм. Нам нравится думать о…
Привет, Хабр!Actor-Critic — это класс алгоритмов в RL, суть которого довольно проста на словах, он сочетает в себе такие полтики как policy-based и оценки value-based. У нас есть два главных действующих лица: Actor и Critic. Actor отвечает за выбор действий, т.е формирование политики поведения, он принимает…
Продолжаю погружаться в Reinforcement Learning. Здесь продолжение статьи Intro Reinforcement Learning. Если предыдущая часть помогла вам понять, что такое среда, агент, награды и функции ценности, то здесь мы сделаем шаг дальше: мы переходим к model-free алгоритмам и Deep Reinforcement Learning, где агент учится оптимальной стратегии, не имея прямого доступа к модели среды. Читать далее
Обучение с подкреплением (Reinforcement learning) является одним из направлений ML. Суть этого метода заключается в том, что обучаемая система или агент учится принимать оптимальные решения через взаимодействие со средой. В отличие от других подходов, Reinforcement learning (RL) не требует заранее…