Системы дополненной генерации (RAG) были разработаны для улучшения качества ответа крупной языковой модели (LLM). Когда пользователь отправляет запрос, система RAG извлекает релевантную информацию из векторной базы данных и передает ее в LLM в качестве контекста. Затем LLM использует этот контекст для генерации ответа для пользователя. Этот процесс значительно улучшает качество ответов LLM с меньшим количеством «галлюцинаций». Читать далее
⬝ 11 библиотек (наборов компонентов) для Angular, о которых стоит знать в 2018-м ⬝ 11 библиотек (наборов компонентов) для Vue, о которых стоит знать в 2018-м ⬝ 11 библиотек (наборов компонентов) для React, о которых стоит знать в 2018-м Перед вами третий материал из серии, посвящённой обзору…
RAG (Retrieval Augmented Generation) - это популярный подход, объединяющий извлечение данных из баз и генерацию текста, позволяя моделям AI давать ответы на вопросы, основанные на информации, которую они не видели в процессе обучения. Важным этапом в развитии RAG является его эффективная оценка, и…
Если, открывая холодильник вы еще не слышали из него про RAG, то наверняка скоро услышите. Однако, в сети на удивление мало полных гайдов, учитывающих все тонкости (оценка релевантности, борьба с галлюцинациями и т.д.) а не обрывочных кусков. Базируясь на опыте нашей работы, я составил гайд который покрывает эту тему наиболее полно.Итак зачем нужен RAG? Читать далее