Напоминание Привет, Хабр! Предлагаю вашему вниманию ещё один перевод моей новой статьи с медиума. В прошлый раз (первая статья) (Habr) мы создали агента на технологии Q-Learning, который совершает сделки на имитированных и реальных биржевых временных рядах и пытались проверить, подходит ли эта область задач для обучения с подкреплением. В этот раз мы добавим LSTM слой для учета временных зависимостей внутри траектории и сделаем инженерию наград (reward shaping) на основе презентаций. Читать дальше →
Владимир Иванов vivanov879, Sr. Deep Learning Engineer в NVIDIA, продолжает рассказывать про обучение с подкреплением. В этой статье речь пойдет про обучение агента для прохождения квестов и о том, как нейросети используют фильтры для распознавания изображений. В предыдущей статье разбиралось обучение агента для простых стрелялок. Про применение обучения с подкреплением на практике Владимир будет рассказывать на AI Conference 22 ноября. Читать дальше →
В прошлой статье я писал про свои ML-модели для оценки отдельных компаний, но вопрос формирования итогового портфеля совсем не затрагивал. В этом посте хочу рассказать о том, как я собираю свой личный портфель, а так же поделиться сайтом, на котором реализую весь описанный в статье функционал http://stocks.ml. Дисклеймер: у автора нет экономического образования и все выводы и суждения в статье делаются на основе житейского опыта и здравого смысла. Читать далее
Картинка отсюда. Machine Learning от Stanford University Machine Learning Foundations: A Case Study Approach от University of Washington CS188.1x: Artificial Intelligence от University of California, Berkeley Practical Machine Learning от Johns Hopkins University Introduction to Artificial Intelligence от Stanford University Artificial Intelligence for Robotics от Stanford University Introduction to Machine Learning Course от Stanford University Читать дальше →