Привет! Меня зовут Александр Плошкин, я руковожу группой развития качества персонализации в Яндексе. Сегодня мы открываем доступ к одному из крупнейших рекомендательных датасетов — Yambda. Он содержит 4,79 млрд обезличенных пользовательских действий, собранных за…
В предыдущей статье мы обсудили основы устройства рекомендательных систем и кейсы использования. Узнали, что основной принцип заключается в рекомендации товаров, понравившихся людям с похожим вкусом, и применении алгоритма коллаборативной фильтрации. В данной статье, будут рассмотрены лайфхаки рекомендательных систем на основе реальных бизнес кейсов. Будет показано, какие метрики лучше использовать, и какую степень близости выбрать для предсказания. Читать дальше →
Привет, читатель! Перед тобой статья-путеводитель по открытым наборам данных для машинного обучения. В ней я, для начала, соберу подборку интересных и свежих (относительно) датасетов. А бонусом, в конце статьи, прикреплю полезные ссылки по самостоятельному поиску датасетов.…
Делимся своими открытыми библиотеками для разработки рекомендательных систем. Что? Да! Рассказываем подробнее. Всем известно, что Сбер это уже не просто банк, а огромная технологическая компания, которая включает в себя и сервисы компаний-партнёров: электронную коммерцию, индустрию развлечений и даже медицину. Количество пользователей достигло 108 млн, и для каждого из них мы создаём персональные рекомендации, которые помогают не потеряться в разнообразии предложений и выбрать лучшее. Читать далее