В предыдущей статье я занялся сравнением методов параметрической оптимизации, т.е., подбора параметров, оценивая прибыльность торговли робота в ходе последующего бэктеста. Выяснилось, что банальный метод Монте-Карло — генерация случайных некоррелированных комбинаций параметров робота — работает вполне неплохо. Сейчас же я хочу протестировать популярный, в том числе, в сообществе программирующих трейдеров, алгоритм: генетический алгоритм оптимизации. Читать дальше →
Генетический алгоритм (GA)Генетический алгоритм - это классический эволюционный алгоритм, основанный на случайной переборе параметр. Под случайным здесь мы подразумеваем, что для поиска решения с использованием ГА, случайные изменения применялись к текущим решениям для…
В типичной реализации генетический алгоритм оперирует параметрами какой-то сложной функции (диофантовые уравнения в статье "Генетический алгоритм. Просто о сложном" mrk-andreev) или алгоритма ("Эволюция гоночных автомобилей на JavaScript" ilya42). Количество параметров неизменно, операции…
Генетический алгоритм — способ оптимизации, какой-либо функции. Но, в нашем случае, мне просто был интересен принцип его работы, своеобразное моделирование эволюции. Ну и чтобы проэволюционировать самому. Мы имеем абстрактное поле, в котором есть организмы (синие и бирюзовые клетки), еда (зеленые) и яд (красные). У созданий всего 64 гена, но можно ввести всего лишь 10 первых. Читать дальше →