Привет, Хабр!Эта статья — о том, как кастомизировать функции потерь в CatBoost. Стандартные функции потерь хороши для типовых задач, но в нашей суровой жизни часто требуются специфичные решения. Например, может понадобиться усилить внимание модели на редких классах или минимизировать разные типы ошибок в зависимости от их влияния на бизнес.. Читать далее
Что влияет на скорость работы программ на C++ и как её добиться при высоком уровне кода? Ведущий разработчик библиотеки CatBoost Евгений Петров ответил на эти вопросы на примерах и иллюстрациях из опыта работы над CatBoost для x86_64. Видео доклада — Всем привет. Я занимаюсь оптимизацией для CPU библиотеки машинного обучения CatBoost. Основная часть нашей библиотеки написана на C++. Сегодня расскажу, какими простыми способами мы добиваемся скорости. Читать дальше →
CatBoost – библиотека, которая была разработана Яндексом в 2017 году, представляет разновидность семейства алгоритмов Boosting и является усовершенствованной реализацией Gradient Boosting Decision Trees (GBDT). CatBoost имеет поддержку категориальных переменных и обеспечивает высокую точность. Стоит…
Всем привет. Меня зовут Артур. Готовясь к выступлению на внутреннем митапе по теме особенности алгоритмов у CatBoost и LightGBM, я понял, что не смог найти единого места, где были бы понятным языком рассказаны основные особенности того, что алгоритмически работает под капотом у CatBoost и LightGBM. Причём не формальные записи алгоритмов на псевдокоде, а понятные пошаговые инструкции. Так появилась эта статья. Читать далее