В свое время DevOps заметно изменил подход к разработке программного обеспечения. Последние пару лет благодаря практикам MLOps меняются принципы и подходы к работе дата-специалистов. Александр Волынский (Technical Product Manager ML Platform VK Cloud) и Сергей Артюхин (преподаватель программы «Симулятор ML» в Karpov Courses) рассказывают, почему MLOps — «новый черный» и как безболезненно реализовать этот подход в своем проекте. Читать дальше →
MLflow - это инструмент для управления жизненным циклом машинного обучения: отслеживание экспериментов, управление и деплой моделей и проектов. В этом руководстве мы посмотрим, как организовать эксперименты и запуски, оптимизировать гиперпараметры с помощью optuna, сравнивать модели и выбирать лучшие параметры. Также рассмотрим логирование моделей, использование их в разных форматах, упаковку проекта в MLproject и установку удаленного Tracking Server MLflow. Читать далее
В этом материале мы подробно разбираем концепцию MLOps. Более того, делаем это тремя способами. Сначала теоретически — через самую толковую, на наш взгляд, схему MLOps. Затем — концептуально, через артефакты, которые заложены в подходе. И наконец, через понимание MLOps как…
Привет, Хабр!В этой статье затронем тему организации процессов Machine Learning Operations (MLops) в beeline business, особое внимание акцентируем на тестировании моделей машинного обучения. Тестирование мы построили с использованием Gitlab (CI/CD), Mlflow и open-source фреймворка Seldon Core для деплоя REST API или gRPC сервисов с моделями в среде Kubernetes. А пока… Читать далее