В первой части были рассмотрены: структура, топология, функции активации и обучающее множество. В этой части попробую объяснить как происходит обучение сверточной нейронной сети. Обучение сверточной нейронной сети На начальном этапе нейронная сеть является необученной…
Глубокие нейронные сети привели к прорыву во множестве задач распознавания образов, таких как компьютерное зрение и распознавание голоса. Сверточная нейронная сеть один из популярных видов нейронных сетей. В своей основе сверточную нейронную сеть можно рассматривать как нейронную сеть, использующую множество идентичных копий одного и того же нейрона. Это позволяет сети иметь ограниченное число параметров при вычислении больших моделей. 2D Свёрточная нейронная сеть Читать дальше →
В прошлой статье мы рассмотрели концептуально все слои и функции, из которых будет состоять будущая модель. Сегодня мы выведем формулы, которые будут отвечать за обучение этой модели. Слои будем разбирать в обратном порядке — начиная с функции потерь и заканчивая сверточным слоем. Если возникнут трудности с пониманием формул, рекомендую ознакомиться с подробным объяснением (на картинках) метода обратного распространения ошибки, и также вспомнить о правиле дифференцирования сложной функции. Читать дальше →
Поскольку я столкнулся с существенными затруднениями в поисках объяснения механизма обратного распространения ошибки, которое мне понравилось бы, я решил написать собственный пост об обратном распространении ошибки реализовав алгоритм Word2Vec. Моя цель, — объяснить сущность алгоритма, используя простую, но нетривиальную нейросеть. Кроме того, word2vec стал настолько популярным в NLP сообществе, что будет полезно сосредоточиться на нем. Читать дальше →