В первой части были рассмотрены: структура, топология, функции активации и обучающее множество. В этой части попробую объяснить как происходит обучение сверточной нейронной сети. Обучение сверточной нейронной сети На начальном этапе нейронная сеть является необученной…
Глубокие нейронные сети привели к прорыву во множестве задач распознавания образов, таких как компьютерное зрение и распознавание голоса. Сверточная нейронная сеть один из популярных видов нейронных сетей. В своей основе сверточную нейронную сеть можно рассматривать как нейронную сеть, использующую множество идентичных копий одного и того же нейрона. Это позволяет сети иметь ограниченное число параметров при вычислении больших моделей. 2D Свёрточная нейронная сеть Читать дальше →
В прошлой статье мы рассмотрели концептуально все слои и функции, из которых будет состоять будущая модель. Сегодня мы выведем формулы, которые будут отвечать за обучение этой модели. Слои будем разбирать в обратном порядке — начиная с функции потерь и заканчивая сверточным слоем. Если возникнут трудности с пониманием формул, рекомендую ознакомиться с подробным объяснением (на картинках) метода обратного распространения ошибки, и также вспомнить о правиле дифференцирования сложной функции. Читать дальше →
Всем привет. Меня зовут Алмаз Хуснутдинов. В этой статье я рассказываю про алгоритм обратного распространения ошибки, который используется для обучения нейросетей.Содержание: архитектура простой нейросети и инициализация переменных, прямое распространение ручной расчет, вывод производных, вывод алгоритма, обратное распространение ручной расчет, реализация простой архитектуры нейросети и задача «логическое или», реализация класса для многослойной нейросети и изображения MNIST. Читать далее