Современные большие языковые модели впечатляют, но остаются громоздкими и статичными. В ближайшие годы мы перейдём от таких «гигантов» к персональным ИИ-спутникам: компактным и обучаемым на ходу. Ключ к этому — долговременная память (mem-векторы), модульные трансформеры, параметро-эффективное дообучение, внешние базы знаний и жёсткая оптимизация под локальное железо. Разбираем, какие технологии уже работают, какие ещё только вырастают из лабораторий и что ждёт нас завтра. Будущее трансформеров
← Предыдущая глава | В чём секрет успеха трансформеров?В последние годы трансформеры стали самой успешной архитектурой нейронных сетей, особенно в задачах обработки естественного языка. Теперь они близки к тому, чтобы стать SOTA для задач компьютерного зрения тоже. Успех трансформеров обусловлен несколькими ключевыми факторами: их механизм внимания, возможность легкой параллелизации, предварительное обучение без учителя и большое количество параметров. Читать далее
Учёные из Юниверсити Колледж Лондон (UCL) и лаборатории Huawei Noah’s Ark Lab разработали новый подход к обучению, который позволяет агентам на базе больших языковых моделей (LLM) динамически адаптироваться к среде без дообучения самой модели. Метод основан на системе структурированной памяти, которая автоматически обновляется по мере накопления агентом опыта, что даёт возможность непрерывно повышать качество его работы. Читать далее
Архитектура Трансформеров уперлась в стену квадратичной сложности O(n²), или «Тиранию Квадрата». В статье мы разбираем два пути решения этой проблемы: Mixture-of-Experts (MoE), масштабирующий знания, и State Space Models (SSM), масштабирующий контекст. Это сравнительный анализ архитектур, которые определяют будущее AI. Читать далее