Как создать и отслеживать многозадачное обучение с независимыми моделями на одном входе и на одном выходе. Полный код на GitHub, соблюдая инструкцию README.md с нуля установки до работающего запуска отслеживания экспериментов и обслуживания моделей Читать далее
MLflow - это инструмент для управления жизненным циклом машинного обучения: отслеживание экспериментов, управление и деплой моделей и проектов. В этом руководстве мы посмотрим, как организовать эксперименты и запуски, оптимизировать гиперпараметры с помощью optuna, сравнивать модели и выбирать лучшие параметры. Также рассмотрим логирование моделей, использование их в разных форматах, упаковку проекта в MLproject и установку удаленного Tracking Server MLflow. Читать далее
Когда речь заходит о таких инструментах, как Airflow, MLflow или Docker, многие сразу представляют себе продакшен-среду, и новичков это может пугать. Однако на самом деле эти инструменты полезны не только в проде или крупных компаниях.Сегодня я хочу рассказать об MLflow. Эта статья рассчитана
Сегодня в постоянно меняющейся сфере машинного обучения особую важность приобретает возможность управлять полным жизненным циклом моделей без особых усилий. Этот витиеватый процесс поможет упростить Open-Source-платформа MLflow. Читать дальше →