В этой статье я делюсь личным опытом разработки MVP LLM-агента на базе Google ADK в образовательных сценариях. Рассказываю, как строил архитектуру от монолитного агента до модульной системы, с какими вызовами столкнулся (память, токены, оркестрация) и какие инженерные лайфхаки помогли справиться. Но главное — делюсь философией: почему работа с LLM похожа на экзамен, как меняется роль CTO и чему учат такие проекты. В финале — 10 уроков, которые я вынес из этого «AI-экзамена». Читать далее
Разработка AI агента, использующего большие языковые модели (LLM) – это малоизвестный пока еще и потому интересный инженерный процесс, охватывающий весь цикл создания от идеи до финального развертывания. Технические стандарты разработки агентских систем пока еще…
Что делает AI агента умнее обычного LLM? AI агенты помогают преодолеть фрагментарность традиционных подходов, сохраняют контекст между операциями и адаптируются к задачам на лету.Узнайте, как создать своего первого AI агента с помощью LangGraph, не погружаясь в сложности. Репозиторий автора с примерами AI агентов собрал уже более 6000 звезд на GitHub! Читать далее
Продолжая серию статей по вычислительной лингвистике, я подготовил русскую версию своей статьи. Большие языковых модели (Large Language Models, LLMs) значительно увеличили свою точность в последние годы. Исследователи уже не ограничиваются получением простых ответов — теперь они…