Существует очевидная проблема: интернет переполнен дезинформацией, а большинство крупных языковых моделей обучаются на огромном количестве текстов, полученных из интернета.В идеале, если бы объём точной информации был значительно больше, то для лжи не осталось бы места. Но так
Проблемы качества базы данных LLM[1] и необучаемости LLM в силу ограничения размеров контекстного окна сводятся к одной проблеме никак с LLM не связанной – оценке доверия к публикациям и их авторам вообще. Вторая проблема – LLM не умеет решать простые логические задачи легко решаемые
Когда мы говорим о бенчмаркинге LLM в какой-то предметной области, то имеем в виду две разные концепции: бенчмарки моделей LLM и бенчмарки систем LLM. Бенчмаркинг моделей LLM заключается в сравнении базовых моделей общего назначения (например, GPT, Mistral, Llama, Gemini, Claude и так далее). Нам не…
Сможем ли мы когда-нибудь доверять искусственному интеллекту? Несмотря на впечатляющий прогресс языковых моделей, они по-прежнему страдают от серьезной «болезни» — так называемых галлюцинаций, когда ИИ выдает ложную или бессмысленную информацию. В одном из недавних исследований выдвигается предположение, что эта проблема — не временный сбой, а фундаментальная особенность работы нейросетей. Если это действительно так, нам придется пересмотреть подход к ИИ. Читать далее