Я работал над созданием инструмента под названием rustsn, который позволяет генерировать, компилировать и тестировать код с использованием LLM (Large Language Models). Изначально идея заключалась в том, чтобы автоматизировать процесс написания небольших фрагментов кода — так называемых…
Несколько дней назад я опубликовал статью Создание инструмента генерации кода с помощью Rust и локальных LLM от Ollama Проект Rustns призван упростить жизнь разработчикам Rust за счет автоматизации утомительных задач. Мой инструмент генерирует фрагменты кода Rust из объяснений…
Проблемы качества базы данных LLM[1] и необучаемости LLM в силу ограничения размеров контекстного окна сводятся к одной проблеме никак с LLM не связанной – оценке доверия к публикациям и их авторам вообще. Вторая проблема – LLM не умеет решать простые логические задачи легко решаемые
Системы дополненной генерации (RAG) были разработаны для улучшения качества ответа крупной языковой модели (LLM). Когда пользователь отправляет запрос, система RAG извлекает релевантную информацию из векторной базы данных и передает ее в LLM в качестве контекста. Затем LLM использует этот контекст для генерации ответа для пользователя. Этот процесс значительно улучшает качество ответов LLM с меньшим количеством «галлюцинаций». Читать далее