Привет, Хабр! На связи KozhinDev и ml-разработчик Приходько Александр. Это вторая статья в цикле публикаций по теме борьбы с дисбалансом классов в машинном обучении. В предыдущей статье мы рассмотрели актуальность данной проблемы и сравнили методы борьбы без внесения изменений в данные: балансировка весов классов и изменение порога принятия решения моделью. В данной части будем тестировать балансировку данных методом undersampling из библиотеки imblearn. Читать далее
Привет, Хабр! На связи KozhinDev и ml-разработчик Приходько Александр. Это четвертая часть цикла о борьбе с дисбалансом классов. Предыдущие статьи:- В первой статье мы рассказали про суть проблемы дисбаланса классов и стандартные методы борьбы с ним;- Во второй статье обсуждались…
Привет, Хабр! На связи KozhinDev, а именно ml-разработчик Приходько Александр. Этой статьей я начну цикл публикаций по теме борьбы с дисбалансом классов. В первую очередь этот гайд предназначен для ml-разработчиков уровня junior/midle. Мы ознакомимся с различными подходами к решению…
Привет, Хабр! На связи KozhinDev и ml-разработчик Приходько Александр. Это третья статья в цикле публикаций по теме борьбы с проблемой дисбаланса классов в машинном обучении. В первой статье мы обсудили актуальность данной проблемы в машинном обучении, а также сравнили методы борьбы…