Приветствую всех читателей! Меня зовут Артем Топоров, и сегодня я хочу поделиться с вами своим опытом участия в соревновании по распознаванию жестового языка, организованном компанией Google. На этом соревновании, собравшем 1139 команд со всего мира, нам удалось занять 2 место. Расскажу как мы вместе с Николаем Форратом и Xun Zhao разработали ML алгоритм для мобильных устройств, едва не заняли первое место и при чем тут спектрограммы. Читать далее
Ранее у нас в блоге уже был материал про лучших в Kaggle, а сегодня представляю вам интервью с признанным дата-сайентистом и гроссмейстером Kaggle Филиппом Сингером, который поделится своим опытом, вдохновением и и достижениями. Беседа призвана мотивировать и воодушевить других людей, которые хотят понять, что нужно, чтобы стать гроссмейстером Kaggle. Также в этом интервью мы узнаем больше об академическом прошлом Филиппа, его увлечении Kaggle и о его работе в качестве дата-сайентиста. Приятного чтения
Применяем Deep Watershed Transform в соревновании Kaggle Data Science Bowl 2018 Представляем вам перевод статьи по ссылке и оригинальный докеризированный код. Данное решение позволяет попасть примерно в топ-100 на приватном лидерборде на втором этапе конкурса среди общего числа участников в районе…
Привет, Хабр! В августе 2017 года платформа для проведения соревнований по машинному обучению Kaggle провела опрос среди более чем 16 000 респондентов с целью узнать, в каком состоянии сейчас находится анализ данных и машинное обучение. Результаты были выложены в открытый доступ, поэтому мы решили проанализировать, чем отечественный Data Science отличается от зарубежного, как выглядит типичный пользователь Kaggle в России и в мире, и, наконец, какие алгоритмы и фреймворки наиболее популярны. Читать дальше →