Привет, Хаброжители! Причинно-следственный анализ — одна из важнейших методологий современной науки о данных (data science), однако между теорией и практикой сохраняется большой пробел. Матеуш написал лучшую на сегодняшний день книгу, которая учит, как перейти от упрощенных моделей
Недавно мы поговорили о том, что такое causal inference или причинно-следственный анализ, и почему он стал так важен для развития машинного обучения. А в этой статье - под катом - хотелось бы рассказать о трендах в развитии Causal Inference в ML в 2021 г. Читать далее
Что появилось первым: курица или яйцо? Статистики давно уже нашли ответ на этот вопрос. Причем несколько раз. И каждый раз ответ был разным.А если серьезно, то для машинного обучения становятся все более актуальными вопросы причинно-следственного анализа (causal inference) - когда…
Приветствуем всех читателей! Сегодня команда Ad-Hoc аналитики X5 Tech приоткроет дверь в увлекательный мир A/B-тестирования Causal Inference. С момента написания предыдущей статьи прошло уже 4 года. За это время наш подход к оценке инициатив значительно эволюционировал. Мы собирали бизнес-кейсы, изучали научную литературу, экспериментировали с реальными данными и в итоге пришли не только к другой модели для оценки эффекта, но и изменили методологию в целом. Читать далее