Привет всем! Сегодня продолжим рассказ о том, как наша команда Data Science из CleverData начала выделять бренды в строках онлайн-чеков. Цель такого упражнения — построение отчета для бренд-анализа, о котором мы подробно рассказали в первой статье на эту тему. Из второй части вы узнаете, как на базе пайплайна (сводки с данными) для получения разметки по брендам мы обучили собственную NER-модель. Читать далее
Распознавание именованных сущностей (Named Entity Recognition, NER) — это одна из самых востребованных задач в обработке естественного языка (NLP). Чтобы создать качественную модель для NER, требуется тщательно размеченная обучающая выборка, а процесс её создания может занять много времени и ресурсов. В этой статье я расскажу о своём пути разметки данных, начиная с использования Open Source инструментов и переходя к Prodigy, профессиональному инструменту для создания обучающих наборов данных. Читать далее
Первую часть статьи об основах NLP можно прочитать здесь. А сегодня мы поговорим об одной из самых популярных задач NLP – извлечении именованных сущностей (Named-entity recognition, NER) – и разберем подробно архитектуры решений этой задачи. Читать дальше →
В этой статье будет рассказано о популярных метриках для NLP-задач: классификации текста, NER и кластеризации. Рассказ будет сопровождаться визуализацией, примерами и кодом на Python. ???? Начинаем ????