Привет, Хабр! Задача снижения размерности является одной из важнейших в анализе данных и может возникнуть в двух следующих случаях. Во-первых, в целях визуализации: перед тем, как работать с многомерными данными, исследователю может быть полезно посмотреть на их структуру,…
Здесь будет рассказано о главных отличиях самого старого и базового алгоритма снижения размерности - PCA от его популярных современных коллег - UMAP и t-SNE. Предполагается, что читатель уже предварительно что-то слышал про эти алгоритмы, поэтому подробного объяснения каждого из них…
Уменьшение размерности данных широко используется в области машинного обучения и анализа данных. Его цель состоит в том, чтобы упростить обработку данных за счет уменьшения количества объектов в наборе данных при сохранении ключевой информации. Когда мы сталкиваемся с данными большой размерности, уменьшение размерности может помочь нам снизить вычислительную сложность, повысить производительность и результативность модели. Читать далее
В этой небольшой статье мы научим нейросеть решать задачу умножения перестановок длины 5 (группа ) и визуализируем результаты обучения с помощью методов проекции t-SNE (с понижением размерности PCA) и алгоритма UMAP. Мы убедимся в том, что даже элементарная модель может "неосознанно" провести бинарную классификацию перестановок. Читать далее