Еще в начале 2018 года вышла статья Deep Reinforcement Learning Doesn't Work Yet ("Обучение с подкреплением пока не работает"). Основная претензия которой сводилась к тому, что современные алгоритмы обучения с подкреплением требуют для решения задачи примерно столько же времени, как и обычный…
Обучение с подкреплением (Reinforcement learning, RL) сыграло ключевую роль в стремительном развитии технологий искусственного интеллекта, которое можно было наблюдать в последнее десятилетие. В этом материале мы простыми словами расскажем о том, что такое обучение с подкреплением, поговорим о том, почему оно важно не только как объект исследований, но и как инструмент, который находит множество самых разных вариантов практического применения. Читать далее
В предыдущем материале из этой серии мы простыми словами рассказали о том, что такое обучение с подкреплением (Reinforcement learning, RL). Там мы, на интуитивном уровне, разобрались с тем, как работают механизмы RL, поговорили о том, как обучение с подкреплением применяется для решения практических задач. В этом материале мы изучим математический аппарат RL, начав с его базовых принципов и дойдя до примеров применения этих принципов при проектировании RL-алгоритмов. Читать далее
Привет, Хаброжители! Глубокое обучение с подкреплением (Reinforcement Learning) — самое популярное и перспективное направление искусственного интеллекта. Практическое изучение RL на Python поможет освоить не только базовые, но и передовые алгоритмы глубокого обучения с подкреплением. Эта…