Всем привет! В этой статье я хочу рассказать про базовый пайплайн в прогнозировании временных рядов с помощью нейронных сетей, в данном случае, наверное, с самыми сложными временными рядами для анализа — финансовыми данными, которые имеют случайную природу, и, казалось бы, непредсказуемые. Или все-таки нет? Читать дальше →
Итак, друзья, продолжаем тему прогнозирования временных рядов с помощью Chronos. Напомню, что Chronos это фреймворк от компании Amazon — простой, но эффективный фрэймворк для предобученных вероятностных моделей временных рядов. Chronos токенизирует значения временных рядов с помощью…
Для обработки изображений возвращаемся к MLP, просто, но эффективно (с конкурентоспособными результатами). Обработка изображений — одна из самых интересных областей машинного обучения. Все началось с многослойных перцептронов (MLP), затем были свертки, потом механизм слоев…
Привет, Хабр. Эта статья посвящена методу долгосрочного прогнозирования временных рядов с помощью рядов Фурье [1-2]. Особенность подхода в том, что в отличие от классических методов прогнозирования и машинного обучения прогнозируется не сама неизвестная функция, а ее коэффициенты разложения в ряд Фурье. Далее по спрогнозированным коэффициентам Фурье восстанавливается неизвестная функция и делается прогноз ее значений на следующий период. Внимание! Статья содержит множество формул. Читать дальше →