Посмотрев лекцию профессора Робина Уилсона о тождестве Эйлера, я наконец смог понять, почему тождество Эйлера является самым красивым уравнением. Чтобы поделиться моим восхищением это темой и укрепить собственные знания, я изложу заметки, сделанные во время лекции. А здесь вы…
Мы уже писали об удивительном свойстве числа e, которое может помочь, когда вслепую из конечного числа вариантов нужно выбрать единственный вариант. Сегодня давайте вспомним о тождестве Эйлера — по праву самом красивом уравнении, важное место в котором занимает число e, но не только оно. Представьте на секунду, что вы почти ничего не знаете о математике, только начинаете открывать её бесконечную красоту — и наслаждайтесь. Приятного чтения
По работе у меня возникла необходимость переводить координаты объекта из углов Эйлера в кватернионы и обратно. В ходе разбирательства пришлось прочитать несколько статей на Хабре, посвященных кватернионам и углам Эйлера, Википедию и просто методички и статьи разных ВУЗов. Для
tl;dr: Учёные из Колумбийского университета во главе с Кеном Шепардом и Рафой Юсте заявили, что обошли столетнюю теорему отсчётов (теорема Найквиста — Шеннона, теорема дискретизации, в русскоязычной литературе — теорема Котельникова): 1, 2. Теперь фильтры защиты от наложения…