Документация к сложным библиотекам на питоне (напр. pandas) хранится в doc-строках и разбросана по сотням страниц сайта. В этой статье мы с помощью небольшого кода упакуем её (информацию из документации для каждого класса и метода) в... датайфрейм. Но зачем? Во-первых, это прикольно так…
В среде питонистов библиотека Pandas пользуется большой популярностью и по большей мере известна в контексте DataSciense и анализа данных. DataFrame пандас позволяет не только всячески манипулировать данными, но и выводить их в нужном формате, предоставляя широкие возможности для кастомизации. Например, использовали ли вы объекты класса Styler, входящего в состав Pandas? Мне показалось интересным взглянуть на Pandas с этой стороны. Читать далее
Что пользователь хочет видеть в пользовательской документации? Что его в ней раздражает? Эти вопросы задаёт себе каждый, кто пишет такую документацию, но далеко не каждый правильно отвечает на них. Совсем небольшой процент пользователей читает документацию. Давайте разберёмся, почему так и как сделать пользовательскую документацию эффективной и изменить отношение пользователей к ней. Читать дальше →
Старт открытого курса OpenDataScience Привет всем, кто ждал запуска открытого курса по практическому анализу данных и машинному обучению! Первая статья посвящена первичному анализу данных с Pandas. Пока в серии планируется 7 статей, идущих вместе с тетрадками Jupyter (репозиторий mlcourse_open), соревнованиями и домашними заданиями. Далее идет список будущих статей, описание курса и собственно, первая тема – введение в Pandas. Читать дальше →