Предисловие В данной статье мы изучим несколько аспектов SVM: теоретическую составляющую SVM; как алгоритм работает на выборках, которые невозможно разбить на классылинейно; пример использования на Python и имплементация алгоритма в библиотеке SciKit Learn. Читать дальше →
Метод опорных векторов (Support Vector Machine или просто SVM) — мощный и универсальный набор алгоритмов для работы с данными любой формы, применяемый не только для задач классификации и регрессии, но и также для выявления аномалий. В данной статье будут рассмотрены основные подходы к созданию SVM, принцип работы, а также реализации с нуля его наиболее популярных разновидностей. Читать далее
Привет всем, кто выбрал путь ML-самурая! Введение: В данной статье рассмотрим метод опорных векторов (англ. SVM, Support Vector Machine) для задачи классификации. Будет представлена основная идея алгоритма, вывод настройки его весов и разобрана простая реализация своими руками. На примере…
Метод опорных векторов — это алгоритм машинного обучения, применяемый для задач линейной и нелинейной классификации, регрессии и обнаружения аномальных данных. С его помощью можно классифицировать текст, изображения, обнаружить спам, идентифицировать почерк, анализировать экспрессии генов, распознавать лица, делать прогнозы и так далее. SVM адаптируется и эффективен в различных приложениях, поскольку может управлять многомерными данными и нелинейными отношениями. Читать далее