Всем привет. Сегодняшний материал — продолжение цикла статей про ключевые события в развитии архитектур нейросетей. В прошлый раз я рассказал о классификации изображений. Сегодня речь пойдет про сегментацию. Статья охватывает FCN, U‑Net, SegNet, DeepLab, PSPNet, Mask R‑CMM и HRNet. Сегментация изображений
Всем привет! Это завершающая статья в серии по эволюции архитектур нейронных сетей в компьютерном зрении. Она будет полезна тем, кто только погружается в сферу и пробует систематизировать свои знания, поэтому я осознанно не погружаю читателей в глубокие расчеты и вычисления. Посмотрим на R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, SSD, RetinaNet, EfficientDet, YOLO. Детекция объектов
Приветствую вас, дорогие читатели! В своей прошлой статье на Хабр я рассказывал, как стать разработчиком в области машинного обучения и нейронных сетей, а также какие вопросы об эволюции архитектур нейронных сетей часто задают на собеседованиях. Чтобы помочь
Ручная сегментация легких занимает около 10 минут и требуется определенная сноровка, чтобы получить такой же качественный результат, как при автоматической сегментации. Автоматическая сегментация занимает около 15 секунд. Я предполагал, что без нейронной сети удастся получить…