Пока другие специалисты по машинному обучению и анализу данных выясняют, как прикрутить побольше слоёв к нейронной сети, чтобы она ещё лучше играла в Марио, давайте обратимся к чему-нибудь более приземлённому и применимому на практике. Кластеризация временных рядов —…
Часть первая — Affinity Propagation Часть вторая — DBSCAN Часть третья — кластеризация временных рядов Часть четвёртая — Self-Organizing Maps (SOM) Часть пятая — Growing Neural Gas (GNG) Доброго времени суток, Хабр! Сегодня я бы хотел рассказать об одном интересном, но крайне малоизвестном алгоритме для…
Часть первая — Affinity propagation Часть вторая — DBSCAN Часть третья — кластеризация временных рядов Часть четвёртая — SOM Self-organizing maps (SOM, самоорганизующиеся карты Кохонена) — знакомая многим классическая конструкция. Их часто поминают на курсах машинного обучения под соусом «а ещё…
Привет, Хабр. Эта статья посвящена методу долгосрочного прогнозирования временных рядов с помощью рядов Фурье [1-2]. Особенность подхода в том, что в отличие от классических методов прогнозирования и машинного обучения прогнозируется не сама неизвестная функция, а ее коэффициенты разложения в ряд Фурье. Далее по спрогнозированным коэффициентам Фурье восстанавливается неизвестная функция и делается прогноз ее значений на следующий период. Внимание! Статья содержит множество формул. Читать дальше →