Широкое распространение машинного обучения помогло стимулировать инновации, которые всё труднее предсказать и создавать на их основе интеллектуальный опыт для продуктов и услуг бизнеса. Чтобы решить эту задачу, важно применять передовые методы. Сергей Десяк, ведущий эксперт центра компетенций DevOps компании Neoflex, делится опытом использования Seldon Core для машинного обучения, в частности, для «выкатки» моделей. Читать далее
Привет, Хабр!В этой статье затронем тему организации процессов Machine Learning Operations (MLops) в beeline business, особое внимание акцентируем на тестировании моделей машинного обучения. Тестирование мы построили с использованием Gitlab (CI/CD), Mlflow и open-source фреймворка Seldon Core для деплоя REST API или gRPC сервисов с моделями в среде Kubernetes. А пока… Читать далее
В рамках этой статьи будет использоваться пакет SDK для Машинного обучения Azure для Python 3 для создания и применения рабочей области Службы машинного обучения Azure. Эта рабочая область — основной блок в облаке для экспериментов, обучения и развертывания моделей машинного обучения с помощью Машинного обучения Azure. Читать дальше →
Хорошо продуманный процесс структурирования проектов машинного обучения поможет быстро создавать новые репозитории GitHub и с самого начала ориентироваться на элегантную программную архитектуру. Команда VK Cloud перевела статью о том, как организовать файлы в проектах машинного обучения, используя VS Code. Шаблон для создания проектов машинного обучения можно скачать на GitHub. Читать дальше →