В данной статье будет представлен укороченный и упрощенный перевод статьи “A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions”. А именно перевод части, относящейся к причинам возникновения галлюцинаций. Упрощение состоит в том, что были опущены части, уходящие в конкретику. В этом переводе мы сосредоточимся на основных причинах возникновения галлюцинаций и примерах. Читать далее
В этой статье рассматривается проблема галлюцинаций ИИ — их причины и возможные способы решения на архитектурном уровне. Это явление является одним из ключевых в работе современных языковых моделей. Создать надежную программу на базе ИИ невозможно без понимания причин возникновения галлюцинаций, которые нарушают работу систем и подрывают доверие к таким помощникам. Помимо технических сложностей, важную роль играет и человеческий фактор. Но обо всем по порядку. Читать далее
Системы дополненной генерации (RAG) были разработаны для улучшения качества ответа крупной языковой модели (LLM). Когда пользователь отправляет запрос, система RAG извлекает релевантную информацию из векторной базы данных и передает ее в LLM в качестве контекста. Затем LLM использует этот контекст для генерации ответа для пользователя. Этот процесс значительно улучшает качество ответов LLM с меньшим количеством «галлюцинаций». Читать далее
Проблемы качества базы данных LLM[1] и необучаемости LLM в силу ограничения размеров контекстного окна сводятся к одной проблеме никак с LLM не связанной – оценке доверия к публикациям и их авторам вообще. Вторая проблема – LLM не умеет решать простые логические задачи легко решаемые