Мой счет за Google API взлетел до €51 из-за контекста LLM. Эта статья раскрывает, почему "память" моделей так дорога, как работает механизм Внимания, и предлагает 5 хаков для управления контекстом. Узнайте, почему будущее за Инженерией Контекста, а не за промптами. Читать далее
Проблемы качества базы данных LLM[1] и необучаемости LLM в силу ограничения размеров контекстного окна сводятся к одной проблеме никак с LLM не связанной – оценке доверия к публикациям и их авторам вообще. Вторая проблема – LLM не умеет решать простые логические задачи легко решаемые
Понимание естественного языка является AI полной задачей. Одним из аспектов такого понимания является понимание контекста. В данной статье я объясню, какие виды контекста выделяет наша психика, как она работает с одним из видов контекста, и как мы этот процесс воссоздаем в нашей
Системы дополненной генерации (RAG) были разработаны для улучшения качества ответа крупной языковой модели (LLM). Когда пользователь отправляет запрос, система RAG извлекает релевантную информацию из векторной базы данных и передает ее в LLM в качестве контекста. Затем LLM использует этот контекст для генерации ответа для пользователя. Этот процесс значительно улучшает качество ответов LLM с меньшим количеством «галлюцинаций». Читать далее